论文标题

紧密结合了无爪子皮图的强色指数

The tight bound for the strong chromatic indices of claw-free subcubic graphs

论文作者

Lin, Yuquan, Lin, Wensong

论文摘要

让$ g $为图,$ k $一个正整数。 $ g $的强$ K $ - 颜色是映射$ ϕ:e(g)\ to \ {1,2,\ dots,k \} $,以至于对于任何两个边缘$ e $和$ e'$,它们彼此相邻或与common Edge相邻或相邻的共同边缘,$ ϕ(e)\ neq(e)\ neq(e)(e)(e)$。 $ g $的强色指数为$χ'_{s}(g)$,是最小整数$ k $,因此$ g $具有强大的$ k $ - edge-gede-coloring。 LV,Li和Zhang [图和组合学38(3)(2022)63]证明,如果$ g $是三角形棱镜以外的无爪子皮图,则$χ_s'(g)\ le 8 $。此外,他们询问上限$ 8 $是否可以提高到$ 7 $。在本文中,我们以肯定的方式回答了这个问题。我们的证明意味着一种线性时间算法,用于找到此类图的强劲$ 7 $ - 边缘。我们还无限地构建了许多无爪的亚立方图,其强大的色度指数达到了$ 7 $。

Let $G$ be a graph and $k$ a positive integer. A strong $k$-edge-coloring of $G$ is a mapping $ϕ: E(G)\to \{1,2,\dots,k\}$ such that for any two edges $e$ and $e'$ that are either adjacent to each other or adjacent to a common edge, $ϕ(e)\neq ϕ(e')$. The strong chromatic index of $G$, denoted as $χ'_{s}(G)$, is the minimum integer $k$ such that $G$ has a strong $k$-edge-coloring. Lv, Li and Zhang [Graphs and Combinatorics 38 (3) (2022) 63] proved that if $G$ is a claw-free subcubic graph other than the triangular prism then $χ_s'(G)\le 8$. In addition, they asked if the upper bound $8$ can be improved to $7$. In this paper, we answer this question in the affirmative. Our proof implies a linear-time algorithm for finding strong $7$-edge-colorings of such graphs. We also construct infinitely many claw-free subcubic graphs with their strong chromatic indices attaining the bound $7$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源