论文标题
从稳定的固定点到任何数量的共存混沌吸引子
Border-collision bifurcations from stable fixed points to any number of coexisting chaotic attractors
论文作者
论文摘要
在不同的物理系统中,稳定的振荡解决方案通过边境碰撞将动态行为转变为更复杂的动力学行为。从数学上讲,当分段平滑图的稳定固定点随着参数而变化时,就会发生这些。本文的目的是强调随后的动力学中可能的极端复杂性。我们在$ n \ ge 2 $尺寸中摄取边界汇合正常形式的实例,$ n^{\ rm th} $迭代是相同偏斜的帐篷映射的直接产物,其具有混乱的吸引子,由$ k \ ge ge 2 $ dissionders组成。由此产生的地图具有共存的吸引子,我们使用伯恩赛德的引理来计算通过取tar片的笛卡尔产物少量扩大间隔间隔的笛卡尔产物而产生的相互脱节区域的数量。通过证明地图的某些迭代是分段扩展的,吸引子被证明是混乱的。从稳定的固定点到许多共存的混沌吸引子的过渡显示在整个参数空间的开放子集中发生,并且不会通过将高阶项添加到正常形式中而破坏,因此可以在数学模型中普遍出现。
In diverse physical systems stable oscillatory solutions devolve into more complicated dynamical behaviour through border-collision bifurcations. Mathematically these occur when a stable fixed point of a piecewise-smooth map collides with a switching manifold as parameters are varied. The purpose of this paper is to highlight the extreme complexity possible in the subsequent dynamics. We perturb instances of the border-collision normal form in $n \ge 2$ dimensions for which the $n^{\rm th}$ iterate is a direct product of identical skew tent maps that have chaotic attractors comprised of $k \ge 2$ disjoint intervals. The resulting maps have coexisting attractors and we use Burnside's lemma to count the number of mutually disjoint trapping regions produced by taking unions of Cartesian products of slight enlargements of the disjoint intervals. The attractors are shown to be chaotic by demonstrating that some iterate of the map is piecewise-expanding. The resulting transition from a stable fixed point to many coexisting chaotic attractors is shown to occur throughout open subsets of parameter space and not destroyed by adding higher order terms to the normal form, hence can be expected to arise generically in mathematical models.