论文标题
Lipschitz函数的表征通过在分层的Lie组上的最大功能的换向器
Characterizations of Lipschitz functions via the commutators of maximal function in Orlicz spaces on stratified Lie groups
论文作者
论文摘要
我们为最大换向器的界限提供了必要和足够的条件,$ m_ {b} $,最大运算符$ [b,m] $的换向器和尖锐的运算符$ [b,m^{\ sharp} $ in orlicz in or orlicz in orlicz space $ l^r^r^r^r^glie complifators $ [b,m] $ compimal operator $ [b,m^{\ sharp} $当$ b $属于Lipschitz空间$ \dotλ_β(\ Mathbb {g})$。我们为Lipschitz空间的某些子类$ \dotλ_β(\ Mathbb {g})$获得了一些新的特征。
We give necessary and sufficient conditions for the boundedness of the maximal commutators $M_{b}$, the commutators of the maximal operator $[b, M]$ and the commutators of the sharp maximal operator $[b, M^{\sharp}]$ in Orlicz spaces $L^Φ(\mathbb{G})$ on any stratified Lie group $\mathbb{G}$ when $b$ belongs to Lipschitz spaces $\dotΛ_β(\mathbb{G})$. We obtain some new characterizations for certain subclasses of Lipschitz spaces $\dotΛ_β(\mathbb{G})$.