论文标题

安全和私人联​​邦学习的泊松二项式机制

The Poisson binomial mechanism for secure and private federated learning

论文作者

Chen, Wei-Ning, Özgür, Ayfer, Kairouz, Peter

论文摘要

我们介绍了Poisson二项式机制(PBM),这是一种用于分布式平均值估计(DME)的离散差分隐私机制,并应用于联邦学习和分析。我们对其隐私的保证进行了严格的分析,表明它与连续的高斯机制实现了相同的隐私性 - 准确性权衡。我们的分析是基于对可能具有独立关注的两个泊松分布的Rényi差异的新颖束缚。 与以前基于添加噪声的离散DP方案不同,我们的机制将局部信息编码为二项式分布的参数,因此输出分布是离散的,并具有有界支持。此外,由于隐私预算$ \ varepsilon \ rightarrow 0 $,因此支持并没有增加,因为在添加剂方案的情况下,需要增加更多噪声才能获得更高的隐私;相反,支持变小,因为$ \ varepsilon \ rightarrow 0 $。有限的支持使我们能够将机制与安全聚合(SECAGG)(一种多方加密协议)相结合,而无需执行模块化剪辑,从而导致无偏见的局部向量估计器。反过来,这使我们能够将其应用于私有FL设置,并在SGD算法的收敛速率上提供上限。此外,由于随着$ \ varepsilon \ rightArrow 0 $的支持,对输出分布的支持变得越来越小,因此我们计划的通信成本随着隐私约束$ \ varepsilon $而降低,以优于所有先前的分布式DP方案,基于高隐私或低通信制度中的附加噪声。

We introduce the Poisson Binomial mechanism (PBM), a discrete differential privacy mechanism for distributed mean estimation (DME) with applications to federated learning and analytics. We provide a tight analysis of its privacy guarantees, showing that it achieves the same privacy-accuracy trade-offs as the continuous Gaussian mechanism. Our analysis is based on a novel bound on the Rényi divergence of two Poisson binomial distributions that may be of independent interest. Unlike previous discrete DP schemes based on additive noise, our mechanism encodes local information into a parameter of the binomial distribution, and hence the output distribution is discrete with bounded support. Moreover, the support does not increase as the privacy budget $\varepsilon \rightarrow 0$ as in the case of additive schemes which require the addition of more noise to achieve higher privacy; on the contrary, the support becomes smaller as $\varepsilon \rightarrow 0$. The bounded support enables us to combine our mechanism with secure aggregation (SecAgg), a multi-party cryptographic protocol, without the need of performing modular clipping which results in an unbiased estimator of the sum of the local vectors. This in turn allows us to apply it in the private FL setting and provide an upper bound on the convergence rate of the SGD algorithm. Moreover, since the support of the output distribution becomes smaller as $\varepsilon \rightarrow 0$, the communication cost of our scheme decreases with the privacy constraint $\varepsilon$, outperforming all previous distributed DP schemes based on additive noise in the high privacy or low communication regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源