论文标题
咖啡环的大规模动力学粗糙行为
Large-scale kinetic roughening behavior of coffee-ring fronts
论文作者
论文摘要
我们通过在[C. \ S. \ dias {\ it等人的[c. \ S. \ dias et al。}中考虑了咖啡环骨料前端的动力学粗糙行为,而是对这种情况的列出模拟模拟,软质{\ bf 14},1903(2018)]。该模型描述了片状胶体的弹道聚集,并取决于一个参数$ r_ \ mathrm {ab} $,该参数控制了两个补丁的亲和力,a和a和a和a和B。 $α\ simeq 1.2 $,$α_ {\ rm loc} \ simeq 0.5 $,$β\ simeq 1 $和$ z \ simeq 1.2 $。对于$ 0 <r_ \ mathrm {ab} \ le 1 $,与标准弹道弹道沉积的模拟进行了比较,表明发生了斑块结构引起的形态不稳定性。结果,我们发现渐近形态行为由宏观形状主导。中间时间制度表现出$ r_ \ mathrm {ab}> 0.01 $的一维KPZ指数,并且该系统遭受了由$ r_ \ mathrm {abrm {ab} = 0 $行为主导的强大交叉。相关函数的详细分析表明,汇总前端始终处于移动阶段,价格为$ 0 <r_ \ mathrm {ab} \ le 1 $,并且它们的动力粗糙行为本质上是异常的,对于$ r_ \ mathrm {ab} \ le 0.01 $。
We have studied the kinetic roughening behavior of the fronts of coffee-ring aggregates via extensive numerical simulations of the off-lattice model considered for this context in [C.\ S.\ Dias {\it et al.}, Soft Matter {\bf 14}, 1903 (2018)]. This model describes ballistic aggregation of patchy colloids and depends on a parameter $r_\mathrm{AB}$ which controls the affinity of the two patches, A and B. Suitable boundary conditions allow us to elucidate a discontinuous pinning-depinning transition at $r_\mathrm{AB}=0$, with the front displaying intrinsic anomalous scaling, but with unusual exponent values $α\simeq 1.2$, $α_{\rm loc} \simeq 0.5$, $β\simeq 1$, and $z\simeq 1.2$. For $0<r_\mathrm{AB}\le 1$, comparison with simulations of standard off-lattice ballistic deposition indicates the occurrence of a morphological instability induced by the patch structure. As a result, we find that the asymptotic morphological behavior is dominated by macroscopic shapes. The intermediate time regime exhibits one-dimensional KPZ exponents for $r_\mathrm{AB}> 0.01$ and the system suffers a strong crossover dominated by the $r_\mathrm{AB}=0$ behavior for $r_\mathrm{AB}\le 0.01$. A detailed analysis of correlation functions shows that the aggregate fronts are always in the moving phase for $0<r_\mathrm{AB}\le 1$ and that their kinetic roughening behavior is intrinsically anomalous for $r_\mathrm{AB}\le 0.01$.