论文标题
各向异性图像锐化的稳定逆流线进化
Stabilised Inverse Flowline Evolution for Anisotropic Image Sharpening
论文作者
论文摘要
中心极限定理将高斯卷积作为图像的通用模糊模型。由于高斯卷积等于均匀的扩散过滤,因此消除此类图像的一种方法是及时扩散它们。但是,向后扩散是高度不良的。因此,它需要在模型中稳定以及高度复杂的数值算法。此外,通常只需要在图像边缘,而不需要锐化,而不会沿它们,因为这可能会导致非常不规则的轮廓。这创造了需要建模稳定的各向异性向后演变,并为此过程中设计适当的数值算法。 我们应对这两个挑战。首先,我们将稳定的逆流线进化(SIFE)作为各向异性图像锐化流动。在极端方面,其部分微分方程(PDE)在梯度方向上是向后的抛物线。有趣的是,通过在那里施加零流量来稳定它是足够的。我们表明,形态学衍生物(在PDE的数字中并不常见)是SIFE的数值近似的理想选择:它们毫不费力地沿梯度方向近似定向衍生物。我们的方案将单方面的形态衍生物适应基础图像结构。它允许在子像素精度上进步,并使我们能够证明稳定性。我们的实验表明,Sife允许非曲线稳态,并优于其他锐化流量。
The central limit theorem suggests Gaussian convolution as a generic blur model for images. Since Gaussian convolution is equivalent to homogeneous diffusion filtering, one way to deblur such images is to diffuse them backwards in time. However, backward diffusion is highly ill-posed. Thus, it requires stabilisation in the model as well as highly sophisticated numerical algorithms. Moreover, sharpening is often only desired across image edges but not along them, since it may cause very irregular contours. This creates the need to model a stabilised anisotropic backward evolution and to devise an appropriate numerical algorithm for this ill-posed process. We address both challenges. First we introduce stabilised inverse flowline evolution (SIFE) as an anisotropic image sharpening flow. Outside extrema, its partial differential equation (PDE) is backward parabolic in gradient direction. Interestingly, it is sufficient to stabilise it in extrema by imposing a zero flow there. We show that morphological derivatives - which are not common in the numerics of PDEs - are ideal for the numerical approximation of SIFE: They effortlessly approximate directional derivatives in gradient direction. Our scheme adapts one-sided morphological derivatives to the underlying image structure. It allows to progress in subpixel accuracy and enables us to prove stability properties. Our experiments show that SIFE allows nonflat steady states and outperforms other sharpening flows.