论文标题
基于代理的流行病学
Differentiable Agent-based Epidemiology
论文作者
论文摘要
机械模拟器是流行病学的必不可少的工具,可以在不同条件下探索复杂,动态感染的行为并导航不确定的环境。基于代理的模型(ABM)是一个越来越流行的模拟范式,可以代表接触相互作用的异质性,并具有颗粒状细节和个体行为的代理。但是,常规的ABM框架不是可区分的,并且在可伸缩性上提出了挑战。因此,将它们连接到辅助数据源是非平凡的。在本文中,我们介绍了GradABM:一种可扩展的,可区分的设计,用于基于代理的建模,可以自动分化基于梯度的学习。 Gradabm可以在几秒钟内快速模拟数百万尺寸的人群,与深度神经网络和摄入的异质数据源集成。这为校准,预测和评估政策干预提供了一系列实际好处。我们通过对实际Covid-19和流感数据集进行了广泛的实验来证明GradABM的功效。
Mechanistic simulators are an indispensable tool for epidemiology to explore the behavior of complex, dynamic infections under varying conditions and navigate uncertain environments. Agent-based models (ABMs) are an increasingly popular simulation paradigm that can represent the heterogeneity of contact interactions with granular detail and agency of individual behavior. However, conventional ABM frameworks are not differentiable and present challenges in scalability; due to which it is non-trivial to connect them to auxiliary data sources. In this paper, we introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation. GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources. This provides an array of practical benefits for calibration, forecasting, and evaluating policy interventions. We demonstrate the efficacy of GradABM via extensive experiments with real COVID-19 and influenza datasets.