论文标题

用机器学习的原子能探索无定形石墨烯的构型空间

Exploring the configurational space of amorphous graphene with machine-learned atomic energies

论文作者

El-Machachi, Zakariya, Wilson, Mark, Deringer, Volker L.

论文摘要

二维扩展的无定形碳(“无定形石墨烯”)是2D中疾病的原型系统,显示了尚未完全了解的丰富而复杂的配置空间。在这里,我们探索了具有原子 - 学习(ML)模型的无定形石墨烯的性质。我们通过通过蒙特卡洛键转换将缺陷引入有序石墨烯,从而创建结构模型,从而使用与缺陷相关的机器学习的本地原子能以及最近的邻居(NN)环境来定义接受标准。我们发现,物理上有意义的结构模型是由ML原子能以这种方式产生的,从连续的随机网络到副结构结构。我们的结果表明,ML原子能原则上可用于指导蒙特 - 卡洛结构搜索,并且它们对局部稳定性的预测可以与无定形石墨烯中的短和中距离相关。我们预计前一点将与无定形材料的研究更一般地相关,而后者对ML潜在模型的解释具有更大的影响。

Two-dimensionally extended amorphous carbon ("amorphous graphene") is a prototype system for disorder in 2D, showing a rich and complex configurational space that is yet to be fully understood. Here we explore the nature of amorphous graphene with an atomistic machine-learning (ML) model. We create structural models by introducing defects into ordered graphene through Monte-Carlo bond switching, defining acceptance criteria using the machine-learned local, atomic energies associated with a defect, as well as the nearest-neighbor (NN) environments. We find that physically meaningful structural models arise from ML atomic energies in this way, ranging from continuous random networks to paracrystalline structures. Our results show that ML atomic energies can be used to guide Monte-Carlo structural searches in principle, and that their predictions of local stability can be linked to short- and medium-range order in amorphous graphene. We expect that the former point will be relevant more generally to the study of amorphous materials, and that the latter has wider implications for the interpretation of ML potential models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源