论文标题
超声分子的自旋系统中探测位点分辨的相关性
Probing site-resolved correlations in a spin system of ultracold molecules
论文作者
论文摘要
具有相互作用成分的合成量子系统在量子信息处理和阐明多体物理学中的基本现象中起着重要作用。在冷却和捕获技术方面取得了令人印象深刻的进步,超速极性分子的集合已成为一种有希望的合成系统,结合了几种优势性能。这些包括大量的内部状态,用于编码量子信息,较长的核和旋转相干时间以及远距离的各向异性相互作用。后者有望允许探索相关量子物质的有趣阶段,例如拓扑超流体,量子自旋液体,分数Chern绝缘子和量子磁体。这些阶段中的探测相关性对于了解它们的微观特性至关重要,因此需要开发新的实验技术。在这里,我们使用量子气显微镜来测量二维光学晶格中极性分子气体中量子相关的位置分辨动力学。使用分子的两个旋转状态,我们实现了一个自旋1/2系统,其中颗粒通过偶极相互作用耦合,从而产生量子自旋 - 交换模型。从远离平衡的合成自旋系统开始,我们研究了在空间各向同性和各向异性相互作用的热化过程中相关性的演变。此外,我们研究了使用Floquet技术从天然自旋交换模型设计的自旋 - 肛门性海森堡模型中的相关动力学。这些实验推动了超声分子的探测和控制相互作用系统的前沿,并有前景探索量子物质的新制度,并表征对量子计算和计量学有用的纠缠状态。
Synthetic quantum systems with interacting constituents play an important role in quantum information processing and in elucidating fundamental phenomena in many-body physics. Following impressive advances in cooling and trapping techniques, ensembles of ultracold polar molecules have emerged as a promising synthetic system that combines several advantageous properties. These include a large set of internal states for encoding quantum information, long nuclear and rotational coherence times and long-range, anisotropic interactions. The latter are expected to allow the exploration of intriguing phases of correlated quantum matter, such as topological superfluids, quantum spin liquids, fractional Chern insulators and quantum magnets. Probing correlations in these phases is crucial to understand their microscopic properties, necessitating the development of new experimental techniques. Here we use quantum gas microscopy to measure the site-resolved dynamics of quantum correlations in a gas of polar molecules in a two-dimensional optical lattice. Using two rotational states of the molecules, we realize a spin-1/2 system where the particles are coupled via dipolar interactions, producing a quantum spin-exchange model. Starting with the synthetic spin system prepared far from equilibrium, we study the evolution of correlations during the thermalization process for both spatially isotropic and anisotropic interactions. Furthermore, we study the correlation dynamics in a spin-anisotropic Heisenberg model engineered from the native spin-exchange model using Floquet techniques. These experiments push the frontier of probing and controlling interacting systems of ultracold molecules, with prospects for exploring new regimes of quantum matter and characterizing entangled states useful for quantum computation and metrology.