论文标题

计数时间序列的概率对帐

Probabilistic Reconciliation of Count Time Series

论文作者

Corani, Giorgio, Azzimonti, Dario, Rubattu, Nicolò

论文摘要

预测和解是一个重要的研究主题。但是,目前既没有正式框架,也没有实用方法来对周期序列的概率对帐。在本文中,我们提出了相干性和调和概率预测的定义,该定义适用于实价和计数变量以及一种概率和解的新方法。它基于贝叶斯规则的概括,它可以调和实价和计数变量。当应用于计数变量时,它会产生一个对帐概率质量函数。与概率高斯和解相比,我们对计数变量的时间对帐进行的实验表明,预测有所改善。

Forecast reconciliation is an important research topic. Yet, there is currently neither formal framework nor practical method for the probabilistic reconciliation of count time series. In this paper we propose a definition of coherency and reconciled probabilistic forecast which applies to both real-valued and count variables and a novel method for probabilistic reconciliation. It is based on a generalization of Bayes' rule and it can reconcile both real-value and count variables. When applied to count variables, it yields a reconciled probability mass function. Our experiments with the temporal reconciliation of count variables show a major forecast improvement compared to the probabilistic Gaussian reconciliation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源