论文标题
Caltech Fish计数数据集:用于多对象跟踪和计数的基准
The Caltech Fish Counting Dataset: A Benchmark for Multiple-Object Tracking and Counting
论文作者
论文摘要
我们介绍了Caltech Fish计数数据集(CFC),该数据集是一种用于检测,跟踪和计数声纳视频中鱼类的大规模数据集。我们将声纳视频识别为可以推进低信噪的计算机视觉应用程序并在多对象跟踪(MOT)和计数中解决域的概括的丰富数据来源。与现有的MOT和计数数据集相比,这些数据集主要仅限于城市中的人和车辆的视频,CFC来自自然世界域,在该域中,目标不容易解析,并且无法轻易利用外观特征来重新识别目标。 CFC允许研究人员训练MOT和计数算法并评估看不见的测试位置的概括性能,从而有超过1,500个视频中有超过100万个注释。我们执行广泛的基线实验,并确定在MOT和计数中推进概括的最新技术的关键挑战和机会。
We present the Caltech Fish Counting Dataset (CFC), a large-scale dataset for detecting, tracking, and counting fish in sonar videos. We identify sonar videos as a rich source of data for advancing low signal-to-noise computer vision applications and tackling domain generalization in multiple-object tracking (MOT) and counting. In comparison to existing MOT and counting datasets, which are largely restricted to videos of people and vehicles in cities, CFC is sourced from a natural-world domain where targets are not easily resolvable and appearance features cannot be easily leveraged for target re-identification. With over half a million annotations in over 1,500 videos sourced from seven different sonar cameras, CFC allows researchers to train MOT and counting algorithms and evaluate generalization performance at unseen test locations. We perform extensive baseline experiments and identify key challenges and opportunities for advancing the state of the art in generalization in MOT and counting.