论文标题
具有深度学习的星系的宇宙结构的分类:将宇宙学模拟与观察连接
Classification of cosmic structures for galaxies with deep learning: connecting cosmological simulations with observations
论文作者
论文摘要
我们探讨了深度学习对宇宙结构进行分类的能力。在宇宙学模拟中,根据暗物质的分布和运动学(DM),将宇宙体积分为空隙,床单,细丝和结中,并且星系也根据分割进行分类。但是,观察性研究不能使用DM采用这种分类方法。在这项研究中,我们证明了深度学习可以弥合模拟和观察之间的差距。我们的模型基于三维卷积神经网络,并通过模拟中星系分布的数据进行了训练,以从星系中推导结构类,而不是DM。我们的模型可以使用DM分布进行培训和预测,可以预测类标签与先前的研究一样准确。这意味着星系分布可以替换为DM的宇宙结构分类,并且我们使用星系的模型可以直接应用于宽场调查观测值。当观察性限制被忽略时,我们的模型可以将模拟星系分类为四个类别(宏观平均$ f _ {\ rm 1} $ - 得分)为64%。如果考虑了限制范围之类的限制,我们的模型可以将SDSS星系分类为$ \ sim100〜 {\ rm mpc} $,精度为60%。在将空隙星系与其他分类区分开的二元分类中,我们的模型可以达到88%的精度。
We explore the capability of deep learning to classify cosmic structures. In cosmological simulations, cosmic volumes are segmented into voids, sheets, filaments and knots, according to the distribution and kinematics of dark matter (DM), and galaxies are also classified according to the segmentation. However, observational studies cannot adopt this classification method using DM. In this study, we demonstrate that deep learning can bridge the gap between simulations and observations. Our models are based on three-dimensional convolutional neural networks and trained with data of the distribution of galaxies in a simulation to deduce the structure classes from the galaxies rather than DM. Our model can predict the class labels as accurate as a previous study using DM distribution for the training and prediction. This means that galaxy distribution can be a substitution for DM for the cosmic-structure classification, and our models using galaxies can be directly applied to wide-field survey observations. When observational restrictions are ignored, our model can classify simulated galaxies into the four classes with an accuracy (macro-averaged $F_{\rm 1}$-score) of 64 per cent. If restrictions such as limiting magnitude are considered, our model can classify SDSS galaxies at $\sim100~{\rm Mpc}$ with an accuracy of 60 per cent. In the binary classification distinguishing void galaxies from the others, our model can achieve an accuracy of 88 per cent.