论文标题

Deformirisnet:虹膜纹理变形的身份保护模型

DeformIrisNet: An Identity-Preserving Model of Iris Texture Deformation

论文作者

Khan, Siamul Karim, Tinsley, Patrick, Czajka, Adam

论文摘要

由于瞳孔大小变化而导致的非线性虹膜纹理变形是导致虹膜识别中真正比较分数的类内差异的主要因素之一。在虹膜识别的主要方法中,环形虹膜区域的大小线性缩放到规范矩形,在编码和匹配中进一步使用。然而,虹膜括约肌和扩张肌的生物学复杂性导致虹膜特征的运动在瞳孔大小的函数中是非线性的,而不仅仅是沿着径向路径的组织。或者,根据虹膜肌肉组织的生物力学的现有理论模型,我们提出了一种新型的基于Deep AutoCododer的模型,该模型可以直接从数据中直接学习虹膜纹理特征的复杂运动。提出的模型采用两个输入,(a)具有初始瞳孔大小的ISO兼容近红外虹膜图像,以及(b)定义虹膜目标形状的二进制掩码。该模型使虹膜纹理的所有必要的非线性变形使图像(a)中的虹膜形状与目标蒙版(b)提供的形状相匹配。损失函数的身份保护成分有助于模型找到保留身份的变形,而不仅仅是生成样品的视觉现实主义。我们还展示了该模型的两个直接应用:与线性模型相比,虹膜识别算法中的虹膜纹理变形更好,以及创建可以帮助人类法医检查人员的生成算法,他们可能需要将虹膜图像与学生扩张的差异进行比较。我们提供源代码和模型权重,以及本文。

Nonlinear iris texture deformations due to pupil size variations are one of the main factors responsible for within-class variance of genuine comparison scores in iris recognition. In dominant approaches to iris recognition, the size of a ring-shaped iris region is linearly scaled to a canonical rectangle, used further in encoding and matching. However, the biological complexity of the iris sphincter and dilator muscles causes the movements of iris features to be nonlinear in a function of pupil size, and not solely organized along radial paths. Alternatively to the existing theoretical models based on the biomechanics of iris musculature, in this paper we propose a novel deep autoencoder-based model that can effectively learn complex movements of iris texture features directly from the data. The proposed model takes two inputs, (a) an ISO-compliant near-infrared iris image with initial pupil size, and (b) the binary mask defining the target shape of the iris. The model makes all the necessary nonlinear deformations to the iris texture to match the shape of the iris in an image (a) with the shape provided by the target mask (b). The identity-preservation component of the loss function helps the model in finding deformations that preserve identity and not only the visual realism of the generated samples. We also demonstrate two immediate applications of this model: better compensation for iris texture deformations in iris recognition algorithms, compared to linear models, and the creation of a generative algorithm that can aid human forensic examiners, who may need to compare iris images with a large difference in pupil dilation. We offer the source codes and model weights available along with this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源