论文标题

关于球形代码和设计的极化

On polarization of spherical codes and designs

论文作者

Boyvalenkov, Peter, Dragnev, Peter, Hardin, Douglas, Saff, Edward, Stoyanova, Maya

论文摘要

在本文中,我们调查了$ \ \ mathbb {r}^n $中的大量潜力的球体上的$ n $ - 点最小值和最大值极化问题。我们在固定尺寸,强度和基数的球形设计的极化上得出了通用的下限和上限。边界是普遍的,因为它们是与电位类别的节点和权重的潜在功能评估的凸组合。由于我们的下限,我们在球形设计的覆盖半径上获得了Fazekas-Levenshtein的边界。利用球形设计的存在,我们的极化边界扩展到一般配置。作为示例,我们在$ \ mathbb {s}^3 $上完全解决了Min-Max两极分化问题,并以$ 120 $的积分解决,并表明$ 600 $ -CELL对于该问题普遍最佳。当$ n $不超过尺寸$ n $的点数量时,当$ n = n+1 $时,我们还提供了解决最大值极化问题的替代方法。我们进一步表明,在所有球形$ 2 $ 2 $ n = 2n $ points $ n = 2,3,4 $的$ 2 $ designs中,交叉型具有最佳的最大偏振常数;对于$ n \ geq 5 $,此说法是基于一个众所周知的猜想,即交叉聚型具有最佳的覆盖半径。也为所有所谓的中心代码建立了最大最佳最优性。

In this article we investigate the $N$-point min-max and the max-min polarization problems on the sphere for a large class of potentials in $\mathbb{R}^n$. We derive universal lower and upper bounds on the polarization of spherical designs of fixed dimension, strength, and cardinality. The bounds are universal in the sense that they are a convex combination of potential function evaluations with nodes and weights independent of the class of potentials. As a consequence of our lower bounds, we obtain the Fazekas-Levenshtein bounds on the covering radius of spherical designs. Utilizing the existence of spherical designs, our polarization bounds are extended to general configurations. As examples we completely solve the min-max polarization problem for $120$ points on $\mathbb{S}^3$ and show that the $600$-cell is universally optimal for that problem. We also provide alternative methods for solving the max-min polarization problem when the number of points $N$ does not exceed the dimension $n$ and when $N=n+1$. We further show that the cross-polytope has the best max-min polarization constant among all spherical $2$-designs of $N=2n$ points for $n=2,3,4$; for $n\geq 5$, this statement is conditional on a well-known conjecture that the cross-polytope has the best covering radius. This max-min optimality is also established for all so-called centered codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源