论文标题

热化和强障碍的相互作用:波湍流理论,数值模拟和多模光纤中的实验

Interplay of thermalization and strong disorder: Wave turbulence theory, numerical simulations, and experiments in multimode optical fibers

论文作者

Berti, Nicolas, Baudin, Kilian, Fusaro, Adrien, Millot, Guy, Picozzi, Antonio, Garnier, Josselin

论文摘要

我们解决了在非线性Schrödinger(或Gross-Pitaevskii)方程的框架中存在时间依赖性疾病的情况下的热化问题。瑞利 - 吉恩分布的热化是由非线性驱动的。另一方面,结构障碍负责朝着均匀平衡分布(粒子等级)放松,从而抑制热化(能量均衡)。在波湍流理论的基础上,我们得出了一个动力学方程,该方程解释了强障碍的存在。该理论揭示了混乱与非线性的相互作用。它出乎意料地表明,在非线性效应中占主导地位的疾病影响的制度可能会发生非平衡的凝结和热化过程。我们通过对非线性schrödinger方程的数值模拟和衍生的动力学方程来验证理论,这些方程在定量一致中发现而无需使用可调节参数。在具有强度障碍存在的多模光纤中实现的实验。

We address the problem of thermalization in the presence of a time-dependent disorder in the framework of the nonlinear Schrödinger (or Gross-Pitaevskii) equation with a random potential. The thermalization to the Rayleigh-Jeans distribution is driven by the nonlinearity. On the other hand, the structural disorder is responsible for a relaxation toward the homogeneous equilibrium distribution (particle equipartition), which thus inhibits thermalization (energy equipartition). On the basis of the wave turbulence theory, we derive a kinetic equation that accounts for the presence of strong disorder. The theory unveils the interplay of disorder and nonlinearity. It unexpectedly reveals that a non-equilibrium process of condensation and thermalization can take place in the regime where disorder effects dominate over nonlinear effects. We validate the theory by numerical simulations of the nonlinear Schrödinger equation and the derived kinetic equation, which are found in quantitative agreement without using adjustable parameters. Experiments realized in multimode optical fibers with an applied external stress evidence the process of thermalization in the presence of strong disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源