论文标题
$ f(t,b)$理论II:Kantowski-Sachs Universe中的各向异性空间
Anisotropic spacetimes in $f(T,B)$ theory II: Kantowski-Sachs Universe
论文作者
论文摘要
在修改的电触电$ f(t,b)$ - 重力理论的背景下,我们考虑了Kantowski-Sachs Line Element所描述的同质和各向异性背景几何形状。我们得出场方程并研究了精确解的存在。此外,通过得出有限和无限态度的固定点来研究场方程的轨迹的演变。对于$ f(t,b)= t+f \ left(b \右)$理论,我们证明,对于函数$ f \ left(b \ right)$的特定极限,各向异性宇宙具有扩展和各向同性的宇宙为具有零空间曲率的吸引子。我们指出,没有未来的吸引子,即渐近解决方案描述具有非零空间曲率的宇宙。
In the context of the modified teleparallel $f(T, B)$-theory of gravity, we consider a homogeneous and anisotropic background geometry described by the Kantowski-Sachs line element. We derive the field equations and investigate the existence of exact solutions. Furthermore, the evolution of the trajectories for the field equations is studied by deriving the stationary points at the finite and infinite regimes. For the $f(T,B)=T+F\left( B\right) $ theory, we prove that for a specific limit of the function $F\left( B\right) $, the anisotropic Universe has the expanding and isotropic Universe as an attractor with zero spatial curvature. We remark that there are no future attractors where the asymptotic solution describes a Universe with nonzero spatial curvature.