论文标题

基于无线电的本地化系统中的自动定位:贝叶斯方法

Auto-Positioning in Radio-based Localization Systems: A Bayesian Approach

论文作者

Jung, Andrea, Schwarzbach, Paul, Michler, Oliver

论文摘要

基于无线电定位系统的应用正在不断增加。鉴于物联网和位置感知的通信系统的传播,对本地化体系结构的需求和可能的用例稳步增加。虽然传统的基于无线电的本地化是通过使用固定节点(绝对引用的位置)进行的,但协作自动定位方法旨在估算位置信息,而无需对节点分布的任何APRIORI知识。自动定位的使用降低了本地化系统的安装工作,因此允许其整个市场的传播。由于在这种情况下的观察和位置信息是相关的,因此需要考虑所有节点的不确定性。在本文中,我们提出了一种基于多维直方图滤波器的离散贝叶斯方法,以解决可靠的自动定位的任务,从而使历史位置和估计位置不确定性传播,并降低了与常规封闭形式的方法相比,可以降低对观测可用性的需求。该方法利用不同的多路径,异常和失败浪费的范围测量值进行了验证,与基线闭合形式自动位置方法相比,我们至少获得了至少58%的定位精度。

The application of radio-based positioning systems is ever increasing. In light of the dissemination of the Internet of Things and location-aware communication systems, the demands on localization architectures and amount of possible use cases steadily increases. While traditional radio-based localization is performed by utilizing stationary nodes, whose positions are absolutely referenced, collaborative auto-positioning methods aim to estimate location information without any a-priori knowledge of the node distribution. The usage of auto-positioning decreases the installation efforts of localization systems and therefore allows their market-wide dissemination. Since observations and position information in this scenario are correlated, the uncertainties of all nodes need to be considered. In this paper we propose a discrete Bayesian method based on a multi-dimensional histogram filter to solve the task of robust auto-positioning, allowing to propagate historical positions and estimated position uncertainties, as well as lowering the demands on observation availability when compared to conventional closed-form approaches. The proposed method is validated utilizing different multipath-, outlier and failure-corrupted ranging measurements in a static environment, where we obtain at least 58% higher positioning accuracy compared to a baseline closed-form auto-positioning approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源