论文标题
塔等效性和卢斯蒂格(Lusztig)的截断傅里叶变换
Tower equivalence and Lusztig's truncated Fourier transform
论文作者
论文摘要
我们提供了基于Deligne-Lusztig组合学的不可还原的孢子反射组的Chapuy和Douvropoulos [3]的结果证明。特别是,如果f表示截短的lusztig傅立叶变换,我们表明,f的图像的图像是f的归一化特征函数是反射表示的外部力量的替代总和,并且类函数与f相当于其图像。
We give a proof of the results of Chapuy and Douvropoulos [3] for irreducible spetsial reflection groups based on Deligne-Lusztig combinatorics. In particular, if f denotes the truncated Lusztig Fourier transform, we show that the image by f of the normalized characteristic function of a Coxeter element is the alternate sum of the exterior powers of the reflection representation, and that a class function is tower equivalent to its image by f .