论文标题

贝叶斯神经网络基于强大的基于模拟的宇宙学推断

Robust Simulation-Based Inference in Cosmology with Bayesian Neural Networks

论文作者

Lemos, Pablo, Cranmer, Miles, Abidi, Muntazir, Hahn, ChangHoon, Eickenberg, Michael, Massara, Elena, Yallup, David, Ho, Shirley

论文摘要

基于仿真的推理(SBI)正在迅速将自己确立为一种标准的机器学习技术,用于分析宇宙学调查中的数据。尽管通过学习模型对密度估计的质量不断提高,但这种技术在实际数据上的应用完全依赖于远远超出训练分布的神经网络的概括能力,这主要是不受限制的。由于科学家创建的模拟的不完美以及产生所有可能参数组合的巨大计算费用,因此,宇宙学中的SBI方法容易受到此类概括性问题的影响。在这里,我们讨论了这两个问题的效果,并展示了如何使用贝叶斯神经网络框架进行训练SBI可以减轻偏见,并在训练集之外产生更可靠的推理。我们介绍了CosmosWag,这是将随机重量平均到宇宙学的首次应用,并将其应用于经过训练的SBI,以推断宇宙微波背景。

Simulation-based inference (SBI) is rapidly establishing itself as a standard machine learning technique for analyzing data in cosmological surveys. Despite continual improvements to the quality of density estimation by learned models, applications of such techniques to real data are entirely reliant on the generalization power of neural networks far outside the training distribution, which is mostly unconstrained. Due to the imperfections in scientist-created simulations, and the large computational expense of generating all possible parameter combinations, SBI methods in cosmology are vulnerable to such generalization issues. Here, we discuss the effects of both issues, and show how using a Bayesian neural network framework for training SBI can mitigate biases, and result in more reliable inference outside the training set. We introduce cosmoSWAG, the first application of Stochastic Weight Averaging to cosmology, and apply it to SBI trained for inference on the cosmic microwave background.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源