论文标题

主动悬浮液中的方向混合

Orientation mixing in active suspensions

论文作者

Zelati, Michele Coti, Dietert, Helge, Gérard-Varet, David

论文摘要

我们研究了由Saintillan和Shelley引入的流行动力学模型,用于用于活跃伸长颗粒的悬浮液的动力学,其中通过空间和方向的分布描述了颗粒。颗粒的均匀分布是固定的不一致状态,已知表现出相变。我们对围绕不连贯状态的线性演化进行了广泛的研究。我们在与光谱(中性)稳定性相对应的非扩散状态中显示(i),悬浮液经历了类似于Landau抑制的混合现象,并且在弱拓扑中,我们在时间衰减率方面提供了最佳的方向。此外,我们表明(ii)在较小的旋转扩散\(ν\)的情况下,混合估计值持续到时间尺度\(ν^{ - 1/2} \),直到指数衰减以增强的耗散速率\(ν^{1/2}} \)接管。球体。相关的\ emph {方向混合}导致宏观量的代数衰减有限。为了证明,我们从可能具有独立关注的Volterra方程的一般衰减结果开始。尽管在非扩展情况下,球体上的显式公式可以得出结论所需的衰减,但在扩散情况下需要更多的工作:在这里,我们通过将优化的优化的低辅助方法与矢量场方法相结合,证明了球体对流扩散方程的混合估计值。在这种情况下,要点之一是为球体上的对流扩散操作员确定良好的通勤矢量字段。 我们朝这个方向的结果可能对涉及方向变量的集体动力学中的其他模型有用。

We study a popular kinetic model introduced by Saintillan and Shelley for the dynamics of suspensions of active elongated particles where the particles are described by a distribution in space and orientation. The uniform distribution of particles is the stationary state of incoherence which is known to exhibit a phase transition. We perform an extensive study of the linearised evolution around the incoherent state. We show (i) in the non-diffusive regime corresponding to spectral (neutral) stability that the suspensions experiences a mixing phenomenon similar to Landau damping and we provide optimal pointwise in time decay rates in weak topology. Further, we show (ii) in the case of small rotational diffusion \(ν\) that the mixing estimates persist up to time scale \(ν^{-1/2}\) until the exponential decay at enhanced dissipation rate \(ν^{1/2}\) takes over.The interesting feature is that the usual velocity variable of kinetic models is replaced by an orientation variable on the sphere. The associated \emph{orientation mixing} leads to limited algebraic decay for macroscopic quantities. For the proof, we start with a general pointwise decay results for Volterra equations that may be of independent interest. While, in the non-diffusive case, explicit formulas on the sphere allow to conclude the desired decay, much more work is required in the diffusive case: here we prove mixing estimates for the advection-diffusion equation on the sphere by combining an optimized hypocoercive approach with the vector field method. One main point in this context is to identify good commuting vector fields for the advection-diffusion operator on the sphere. Our results in this direction may be useful to other models in collective dynamics, where an orientation variable is involved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源