论文标题
tau功能,无限的司法和格子复发
Tau functions, infinite Grassmannians and lattice recurrences
论文作者
论文摘要
当在无限尺寸的sato-segal-wilson grassmannian中对KP $τ$ - 函数的添加公式进行评估时,为KP Hierharchy离散的解决方案提供了无限参数。 CKP层次结构类似地被视为在拉格朗日亚grassmannian上的最大各向同性子空间的通勤流相对于适当定义的符号形式。在KP轨道内评估$τ$ - 功能时,由此产生的离散化为超确定关系(或Kashaev复发)和六面体(或Kenyon-Pemantle)复发提供了解决方案。
The addition formulae for KP $τ$-functions, when evaluated at lattice points in the KP flow group orbits in the infinite dimensional Sato-Segal-Wilson Grassmannian, give infinite parametric families of solutions to discretizations of the KP hierarchy. The CKP hierarchy may similarly be viewed as commuting flows on the Lagrangian sub-Grassmannian of maximal isotropic subspaces with respect to a suitably defined symplectic form. Evaluating the $τ$-functions at a sublattice of points within the KP orbit, the resulting discretization gives solutions both to the hyperdeterminantal relations (or Kashaev recurrence) and the hexahedron (or Kenyon-Pemantle) recurrence.