论文标题

签名的累积分布变换,用于1-D信号的参数估计

Signed Cumulative Distribution Transform for Parameter Estimation of 1-D Signals

论文作者

Thareja, Sumati, Rohde, Gustavo, Martin, Rocio Diaz, Medri, Ivan, Aldroubi, Akram

论文摘要

我们使用签名的累积分布变换(SCDT)来描述一种信号参数估计的方法,这是一种基于最佳传输理论的最近引入的信号表示工具。该方法基于最初用于正分布引入的累积分布变换(CDT)的信号估计。具体而言,我们表明,可以简单地使用SCDT空间中的线性最小二乘技术来进行任意信号类别的线性最小二乘技术来进行Wasserstein-Type距离最小化,从而为估计问题提供了全局最小化器,即使基础信号是未知参数的非线性函数。使用$ L_P $最小化与当前信号估计方法的比较显示了该方法的优势。

We describe a method for signal parameter estimation using the signed cumulative distribution transform (SCDT), a recently introduced signal representation tool based on optimal transport theory. The method builds upon signal estimation using the cumulative distribution transform (CDT) originally introduced for positive distributions. Specifically, we show that Wasserstein-type distance minimization can be performed simply using linear least squares techniques in SCDT space for arbitrary signal classes, thus providing a global minimizer for the estimation problem even when the underlying signal is a nonlinear function of the unknown parameters. Comparisons to current signal estimation methods using $L_p$ minimization shows the advantage of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源