论文标题

FastML科学基准:加速实时科学边缘机器学习

FastML Science Benchmarks: Accelerating Real-Time Scientific Edge Machine Learning

论文作者

Duarte, Javier, Tran, Nhan, Hawks, Ben, Herwig, Christian, Muhizi, Jules, Prakash, Shvetank, Reddi, Vijay Janapa

论文摘要

机器学习(ML)的应用日期为许多独特而具有挑战性的科学应用正在增长。但是,这些应用面临的至关重要的挑战是它们需要超长延迟和探测器ML功能。鉴于摩尔定律和丹纳德缩放的放缓,再加上科学仪器的快速进步,导致数据速率不断提高,因此需要在极端边缘的超快速ML。边缘的快速ML对于实时减少和过滤科学数据以加速科学实验至关重要,并实现更深刻的见解。为了加快实时科学边缘ML硬件和软件解决方案,我们需要具有足够规格的受限基准任务,以便通常适用且易于访问。这些基准可以指导未来的Edge ML硬件的设计,以实现能够满足纳秒和微秒级延迟要求的科学应用程序。为此,我们介绍了一组科学的ML基准,涵盖了各种ML和嵌入式系统技术。

Applications of machine learning (ML) are growing by the day for many unique and challenging scientific applications. However, a crucial challenge facing these applications is their need for ultra low-latency and on-detector ML capabilities. Given the slowdown in Moore's law and Dennard scaling, coupled with the rapid advances in scientific instrumentation that is resulting in growing data rates, there is a need for ultra-fast ML at the extreme edge. Fast ML at the edge is essential for reducing and filtering scientific data in real-time to accelerate science experimentation and enable more profound insights. To accelerate real-time scientific edge ML hardware and software solutions, we need well-constrained benchmark tasks with enough specifications to be generically applicable and accessible. These benchmarks can guide the design of future edge ML hardware for scientific applications capable of meeting the nanosecond and microsecond level latency requirements. To this end, we present an initial set of scientific ML benchmarks, covering a variety of ML and embedded system techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源