论文标题

在一些质量数量的产品上

On some products taken over the prime numbers

论文作者

Bedhouche, Abdelmalek, Farhi, Bakir

论文摘要

本文致力于研究$ \ prod_ {p} p^{\ lfloor \ frac {x} {x} {f(p)} \ rfloor} $的一些表达,其中$ x $是一个非负性的实际数字,$ f $是一种满足某些条件的算术功能,并且超过了某些条件,并且超过了primes $ $ $ p $ p。我们首先证明可以通过使用$ \ mathrm {lcm} $函数来表达此类表达,而无需任何引用素数。我们用几个示例说明了这一结果。本文的其余部分专门研究与$ f(m)= m $和$ f(m)= m -1 $有关的两种特殊情况。在这两种情况下,我们都发现了基础表达式的算术特性和分析估计。我们还为案例$ f(m)= m -1 $提出了一个重要的猜想,这取决于特殊表格的质量数的计数。

This paper is devoted to study some expressions of the type $\prod_{p} p^{\lfloor\frac{x}{f(p)}\rfloor}$, where $x$ is a nonnegative real number, $f$ is an arithmetic function satisfying some conditions, and the product is over the primes $p$. We begin by proving that such expressions can be expressed by using the $\mathrm{lcm}$ function, without any reference to prime numbers; we illustrate this result with several examples. The rest of the paper is devoted to study the two particular cases related to $f(m) = m$ and $f(m) = m - 1$. In both cases, we found arithmetic properties and analytic estimates for the underlying expressions. We also put forward an important conjecture for the case $f(m) = m - 1$, which depends on the counting of the prime numbers of a special form.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源