论文标题

量子噪声引起的储层计算

Quantum Noise-Induced Reservoir Computing

论文作者

Kubota, Tomoyuki, Suzuki, Yudai, Kobayashi, Shumpei, Tran, Quoc Hoan, Yamamoto, Naoki, Nakajima, Kohei

论文摘要

量子计算已经从理论阶段转变为实用阶段,在实施物理量子位时提出了艰巨的挑战,物理量子位受到周围环境的噪音。这些量子噪声在量子设备中无处不在,并在量子计算模型中产生不利影响,从而对其校正和缓解技术进行了广泛的研究。但是,这些量子声总是会提供缺点吗?我们通过提出一个称为量子噪声引起的储层计算的框架来解决此问题,并表明某些抽象量子噪声模型可以诱导时间输入数据的有用信息处理功能。我们在几个典型的基准测试中证明了这种能力,并研究了信息处理能力,以阐明框架的处理机制和内存概况。我们通过在许多IBM量子处理器中实现框架,并通过模型分析获得了相似的特征内存配置文件来验证我们的观点。令人惊讶的结果,随着量子设备的较高噪声水平和错误率,信息处理能力增加了。我们的研究为将有用的信息从量子计算机的噪音转移到更复杂的信息处理器上开辟了一条新颖的道路。

Quantum computing has been moving from a theoretical phase to practical one, presenting daunting challenges in implementing physical qubits, which are subjected to noises from the surrounding environment. These quantum noises are ubiquitous in quantum devices and generate adverse effects in the quantum computational model, leading to extensive research on their correction and mitigation techniques. But do these quantum noises always provide disadvantages? We tackle this issue by proposing a framework called quantum noise-induced reservoir computing and show that some abstract quantum noise models can induce useful information processing capabilities for temporal input data. We demonstrate this ability in several typical benchmarks and investigate the information processing capacity to clarify the framework's processing mechanism and memory profile. We verified our perspective by implementing the framework in a number of IBM quantum processors and obtained similar characteristic memory profiles with model analyses. As a surprising result, information processing capacity increased with quantum devices' higher noise levels and error rates. Our study opens up a novel path for diverting useful information from quantum computer noises into a more sophisticated information processor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源