论文标题
多重重力的非相关主义和超级缩放尺度限制
Non-Relativistic and Ultra-Relativistic Scaling Limits of Multimetric Gravity
论文作者
论文摘要
我们提出了一种收缩方法,可用于重建最近的扩展的非忠实和超偏好的代数以及相应的行动原理。该方法涉及使用庞加莱代数的多个副本。因此,收缩定义了重力理论的非偏见或超相关限制。特别是,我们表明,双 - 金属重力的非相关性缩放限制对应于最新的牛顿重力的动作原理,具有恒定的背景质量密度。
We present a method of contraction that can be applied to re-construct the recent extended non-relativistic and ultra-relativistic algebras as well as corresponding action principles. The methodology involves the use of multiple copies of Poincaré algebra. Consequently, the contraction defines non-relativistic or ultra-relativistic limits of multimetric theories of gravity. In particular, we show that the non-relativistic scaling limit of bi-metric gravity corresponds to the recent formulation of an action principle for Newtonian gravity with a constant background mass density.