论文标题

$ PQ $的不限制组的交点密度

Intersection density of imprimitive groups of degree $pq$

论文作者

Behajaina, Angelot, Maleki, Roghayeh, Razafimahatratra, Andriaherimanana Sarobidy

论文摘要

如果$ \ Mathcal {f}的任何两个元素同意,则有限的及物组的子集$ \ Mathcal {f} $ $ g \ leq leq \ leq \ leq \ operatorName {sym}(ω)$ as \ emph {Intersecting},如果$ \ Mathcal {f} $的两个要素同意。 $ g $的\ emph {相交密度}是$$ρ(g)= \ max \ left \ {\ mathcal {| f |}/|g_Ω| \ MID \ MATHCAL {F} \ subset G \ Mbox {是相交} \ right \},$$,其中$ω\inΩ$和$g_Ω$是$ g $中的$ω$的稳定剂。 众所周知,如果$ g \ leq \ operatorname {sym}(ω)$是一个不可或缺的学位群体,则是两个奇数primes $ p> q $的产物,承认一个尺寸$ p $或两个完整块系统的块,其块的大小$ q $,然后是$ρ(g)= 1 $。 在本文中,我们分析了不可限制的$ pq $组的交点密度,该组基于诱导动作的块的内核。对于那些内核非平凡的人来说,只要存在一个带有参数$ [p,k] _q $的环状代码$ c $的交叉密度大于$ 1 $,因此,$ c $的任何代码装置的任何代码为最多$ p-1 $,在最多的$ p-1 $,并且在某些环境中,在某些环境中,它是适当的经济评估编号。对于那些准富含的人,我们将案例减少到包含$ \ operatorname {alt}(5)$或投射特殊线性群体的几乎简单的组。在$ p $和$ q $的一些限制下,我们举了一些示例,后者的交叉密度等于$ 1 $。

A subset $\mathcal{F}$ of a finite transitive group $G\leq \operatorname{Sym}(Ω)$ is \emph{intersecting} if any two elements of $\mathcal{F}$ agree on an element of $Ω$. The \emph{intersection density} of $G$ is the number $$ρ(G) = \max\left\{ \mathcal{|F|}/|G_ω| \mid \mathcal{F}\subset G \mbox{ is intersecting} \right\},$$ where $ω\inΩ$ and $G_ω$ is the stabilizer of $ω$ in $G$. It is known that if $G\leq \operatorname{Sym}(Ω)$ is an imprimitive group of degree a product of two odd primes $p>q$ admitting a block of size $p$ or two complete block systems, whose blocks are of size $q$, then $ρ(G) = 1$. In this paper, we analyse the intersection density of imprimitive groups of degree $pq$ with a unique block system with blocks of size $q$ based on the kernel of the induced action on blocks. For those whose kernels are non-trivial, it is proved that the intersection density is larger than $1$ whenever there exists a cyclic code $C$ with parameters $[p,k]_q$ such that any codeword of $C$ has weight at most $p-1$, and under some additional conditions on the cyclic code, it is a proper rational number. For those that are quasiprimitive, we reduce the cases to almost simple groups containing $\operatorname{Alt}(5)$ or a projective special linear group. We give some examples where the latter has intersection density equal to $1$, under some restrictions on $p$ and $q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源