论文标题

持续学习对环境环境的声音分类

Continual Learning For On-Device Environmental Sound Classification

论文作者

Xiao, Yang, Liu, Xubo, King, James, Singh, Arshdeep, Chng, Eng Siong, Plumbley, Mark D., Wang, Wenwu

论文摘要

鉴于对计算资源的限制(例如,模型大小,跑步内存),在不灾难性遗忘的情况下不断学习新课程是一个具有挑战性的问题。为了解决这个问题,我们提出了一种简单有效的持续学习方法。我们的方法通过测量按样本分类不确定性来选择培训的历史数据。具体而言,我们通过观察数据的分类概率如何与添加到分类器嵌入中的平行扰动相比如何波动来测量不确定性。通过这种方式,与将扰动添加到原始数据相比,计算成本可以大大降低。 DCASE 2019任务1和ESC-50数据集的实验结果表明,我们所提出的方法优于基线的分类精度和计算效率的基线持续学习方法,表明我们的方法可以有效,可以逐步学习新的类别,而无需用于灾难性的遗忘问题,而不是灾难性的环境环境声音分类。

Continuously learning new classes without catastrophic forgetting is a challenging problem for on-device environmental sound classification given the restrictions on computation resources (e.g., model size, running memory). To address this issue, we propose a simple and efficient continual learning method. Our method selects the historical data for the training by measuring the per-sample classification uncertainty. Specifically, we measure the uncertainty by observing how the classification probability of data fluctuates against the parallel perturbations added to the classifier embedding. In this way, the computation cost can be significantly reduced compared with adding perturbation to the raw data. Experimental results on the DCASE 2019 Task 1 and ESC-50 dataset show that our proposed method outperforms baseline continual learning methods on classification accuracy and computational efficiency, indicating our method can efficiently and incrementally learn new classes without the catastrophic forgetting problem for on-device environmental sound classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源