论文标题

固定点集的平滑$ g $ -manifolds伪等于$ g $ -Template

Fixed point sets of smooth $G$-manifolds pseudo-equivalent to a $G$-template

论文作者

Pawałowski, Krzysztof M., Pulikowski, Jan

论文摘要

对于有限的组$ g $而不是主要电力订单的$ g $,奥利弗(Oliver,1996)回答了以下问题,哪些是在磁盘上$ g $的平滑动作的固定点集(euclidean Spaces)的固定点集。我们将Oliver的结果扩展到紧凑(分别,开放)平滑$ g $ -mmanifolds $ m $ pseudo-y $等效,是有限的$ \ m arthbb {z} $ - acyclic $ g $ -CW综合体$ n_g $是$ g $的Oliver号码。我们证明,上述问题的答案并不取决于$ y $的选择。 对于有限连接的$ g $ -CW复合$ y $,以使$ y^g $是非空的且连接的,称为$ g $ -Template,我们证明,紧凑型稳定的可行的可行流形$ f $是固定点集合的固定点集合$ m^g $紧凑型$ g $ g $ g $ - manifold $ mmanifold $ m $ m $ pseudo $ y $ $ y $ $ y $ y $ y $ if) χ(y^g)\ pmod {n_g} $。此外,存在与$ g $ -template $ y $相当的紧凑平滑固定点免费$ g $ -mmanifold pseudo-y $,而仅当$χ(y^g)\ equiv 0 \ pmod {n_g} $。特别地,与磁盘上的操作类似,存在一个紧凑的平滑固定点免费$ g $ -manifold伪伪伪型与真实的投射空间$ \ mathbb {rm} {\ rm p}^{\ rm p}^{2n} $,对于整数$ n \ geq 1 $,如果是$ g $,则是olive olive a olive op olive operive olive geq 1 $。最后,我们证明,每个有限的Oliver $ g $在$ \ mathbb {r} {\ rm p}^{2n} $上都有一个平滑的固定点免费操作,用于某些整数$ n \ geq 1 $。

For a finite group $G$ not of prime power order, Oliver (1996) has answered the question which manifolds occur as the fixed point sets of smooth actions of $G$ on disks (resp., Euclidean spaces). We extend Oliver's result to compact (resp., open) smooth $G$-manifolds $M$ pseudo-equivalent to $Y$, a finite $\mathbb{Z}$-acyclic $G$-CW complex such that the fixed point set $Y^G$ is non-empty, connected, and $χ(Y^G) \equiv 1 \pmod{n_G}$, where $n_G$ is the Oliver number of $G$. We prove that the answer to the question above does not depend on the choice of $Y$. For a finite connected $G$-CW complex $Y$ such that $Y^G$ is non-empty and connected, called a $G$-template, we prove that a compact stably parallelizable manifold $F$ occurs as the fixed point set $M^G$ of a compact smooth $G$-manifold $M$ pseudo-equivalent to $Y$, if and only if $χ(F) \equiv χ(Y^G) \pmod{n_G}$. Moreover, there exists a compact smooth fixed point free $G$-manifold pseudo-equivalent to a $G$-template $Y$, if and only if $χ(Y^G) \equiv 0 \pmod{n_G}$. In particular, similarly as for actions on disks, there exists a compact smooth fixed point free $G$-manifold pseudo-equivalent to the real projective space $\mathbb{R}{\rm P}^{2n}$ for an integer $n \geq 1$, if and only if $G$ is an Oliver group. Finally, we prove that each finite Oliver group $G$ has a smooth fixed point free action on $\mathbb{R}{\rm P}^{2n}$ itself for some integer $n \geq 1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源