论文标题
路径积分量子蒙特卡洛法的光核法
Path Integral Quantum Monte Carlo Method for Light Nuclei
论文作者
论文摘要
我描述了第一个连续的空间核路径积分量蒙特卡洛法,并使用局部手性相互作用均采用近代到next to-next to-next to-Leading-to-Leadne $ v_6'$ Interaction来计算包括Deuteron,Triton,Triton,helium-3和Helium-4在内的光核的基态特性。与基于扩散的量子蒙特卡洛方法(例如格林的功能蒙特卡洛和辅助场扩散蒙特卡洛)相比,路径积分量子蒙特卡洛具有一个优势,它可以直接计算出无需折衷的运算符的期望值,无论它们是与汉密尔顿的通勤。对于与哈密顿量(例如哈密顿本身)上下班的运营商,路径量子量蒙特卡洛光核曲线结果与格林的功能蒙特卡洛和辅助场扩散蒙特卡洛结果一致。对于其他操作员的期望,对于理解核测量值而不与哈密顿量通勤很重要,因此无法通过不折衷的基于扩散的量子蒙特卡洛方法准确地计算出来,因此,路径积分量子蒙特卡洛方法可靠地提供了可靠的结果。我显示了单米族数字密度分布和欧几里得响应函数的根平方半径。我还系统地描述了这项工作中使用的所有采样算法,使计算有效的策略,误差估计以及实施代码执行计算的详细信息。这项工作可以用作基准测试,用于使用路径积分量子蒙特卡洛对较大核或有限温度核物质的未来计算。
I describe the first continuous space nuclear path integral quantum Monte Carlo method, and calculate the ground state properties of light nuclei including Deuteron, Triton, Helium-3 and Helium-4, using both local chiral interaction up to next-to-next-to-leading-order and the Argonne $v_6'$ interaction. Compared with diffusion based quantum Monte Carlo methods such as Green's function Monte Carlo and auxiliary field diffusion Monte Carlo, path integral quantum Monte Carlo has the advantage that it can directly calculate the expectation value of operators without tradeoff, whether they commute with the Hamiltonian or not. For operators that commute with the Hamiltonian, e.g., the Hamiltonian itself, the path integral quantum Monte Carlo light-nuclei results agree with Green's function Monte Carlo and auxiliary field diffusion Monte Carlo results. For other operator expectations which are important to understand nuclear measurements but do not commute with the Hamiltonian and therefore cannot be accurately calculated by diffusion based quantum Monte Carlo methods without tradeoff, the path integral quantum Monte Carlo method gives reliable results. I show root-mean-square radii, one-particle number density distributions, and Euclidean response functions for single-nucleon couplings. I also systematically describe all the sampling algorithms used in this work, the strategies to make the computation efficient, the error estimations, and the details of the implementation of the code to perform calculations. This work can serve as a benchmark test for future calculations of larger nuclei or finite temperature nuclear matter using path integral quantum Monte Carlo.