论文标题

针对定向的日志符号表面的日志浮子共同体

Log Floer cohomology for oriented log symplectic surfaces

论文作者

Kirchhoff-Lukat, Charlotte

论文摘要

本文提供了Lagrangian交叉路口的首次扩展,将浮子共同体学到泊松结构,几乎无处不在,但在较低维度的次曼式中退化。本文的主要结果是针对配备对数符号结构的可定向表面的拉格朗日交叉浮子浮子共同体的定义。我们表明,在适当的同位素下,这种同步是不变的,并且在用于单个Lagrangian计算时与Log de Rham的同学同构。

This article provides the first extension of Lagrangian Intersection Floer cohomology to Poisson structures which are almost everywhere symplectic, but degenerate on a lowerdimensional submanifold. The main result of the article is the definition of Lagrangian intersection Floer cohomology, referred to as log Floer cohomology, for orientable surfaces equipped with log symplectic structures. We show that this cohomology is invariant under suitable isotopies and that it is isomorphic to the log de Rham cohomology when computed for a single Lagrangian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源