论文标题

扩散颗粒的运输特性,适合在捕获环境中生存的条件

Transport properties of diffusive particles conditioned to survive in trapping environments

论文作者

Pozzoli, Gaia, De Bruyne, Benjamin

论文摘要

我们认为在$ n $的存在下,具有扩散系数$ d $的一维的布朗运动,部分吸收了强度$β$,距距离$ l $隔开,并且在粒子的初始位置周围均匀地间隔。我们研究该过程的运输属性,以生存为$ t $。我们发现幸存的粒子首先在遇到陷阱之前正常扩散,然后经历瞬时异常扩散的时期,之后它达到了最终的扩散状态。渐近方案由有效的扩散系数$ d_ \ text {eff} $控制,该{eff} $由陷阱环境引起,通常与原始环境不同。我们表明,当陷阱的数量为\ emph {有限}时,环境会增强扩散并诱导有效的扩散系数,该系数在系统上等于$ d_ \ text {eff} = 2d $,独立于陷阱的数量,陷阱强度$β$和距离$ l $。相反,当陷阱的数量为\ emph {infinite}时,我们发现环境通过有效的扩散系数抑制扩散,该系数取决于陷阱强度$β$和距离$ l $以及通过非平常缩放函数$ d_ \ d_ \ text {eff} = d \ ntect = d \ not fref f f f fref fref fl/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/wer/此外,我们提供了一种无排斥的算法来通过得出有效的langevin方程,该方程具有由陷阱引起的有效排斥潜力,从而产生了幸存的轨迹。最后,我们将结果扩展到其他陷阱环境。

We consider a one-dimensional Brownian motion with diffusion coefficient $D$ in the presence of $n$ partially absorbing traps with intensity $β$, separated by a distance $L$ and evenly spaced around the initial position of the particle. We study the transport properties of the process conditioned to survive up to time $t$. We find that the surviving particle first diffuses normally, before it encounters the traps, then undergoes a period of transient anomalous diffusion, after which it reaches a final diffusive regime. The asymptotic regime is governed by an effective diffusion coefficient $D_\text{eff}$, which is induced by the trapping environment and is typically different from the original one. We show that when the number of traps is \emph{finite}, the environment enhances diffusion and induces an effective diffusion coefficient that is systematically equal to $D_\text{eff}=2D$, independently of the number of the traps, the trapping intensity $β$ and the distance $L$. On the contrary, when the number of traps is \emph{infinite}, we find that the environment inhibits diffusion with an effective diffusion coefficient that depends on the traps intensity $β$ and the distance $L$ through a non-trivial scaling function $D_\text{eff}=D \mathcal{F}(βL/D)$, for which we obtain a closed-form. Moreover, we provide a rejection-free algorithm to generate surviving trajectories by deriving an effective Langevin equation with an effective repulsive potential induced by the traps. Finally, we extend our results to other trapping environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源