论文标题

多视光度立体声的神经明显的BRDF字段

Neural apparent BRDF fields for multiview photometric stereo

论文作者

Asthana, Meghna, Smith, William A. P., Huber, Patrik

论文摘要

我们建议使用以光源方向为条件的神经辐射场(NERF)的扩展来解决多视光度立体声问题。我们神经表示的几何部分预测了表面正常方向,从而使我们能够理解局部表面反射率。我们的神经表示的外观部分被分解为神经双向反射率函数(BRDF),作为拟合过程的一部分学习,而阴影预测网络(以光源方向为条件),使我们能够对明显的BRDF进行建模。基于物理图像形成模型的感应偏见的学识渊博组件的平衡使我们能够远离训练期间观察到的光源和查看器方向。我们证明了我们在多视光度立体基准基准上的方法,并表明可以通过NERF的神经密度表示可以获得竞争性能。

We propose to tackle the multiview photometric stereo problem using an extension of Neural Radiance Fields (NeRFs), conditioned on light source direction. The geometric part of our neural representation predicts surface normal direction, allowing us to reason about local surface reflectance. The appearance part of our neural representation is decomposed into a neural bidirectional reflectance function (BRDF), learnt as part of the fitting process, and a shadow prediction network (conditioned on light source direction) allowing us to model the apparent BRDF. This balance of learnt components with inductive biases based on physical image formation models allows us to extrapolate far from the light source and viewer directions observed during training. We demonstrate our approach on a multiview photometric stereo benchmark and show that competitive performance can be obtained with the neural density representation of a NeRF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源