论文标题
关于7-划定的平面隔板钻石的分裂性
On the Divisibility of 7-Elongated Plane Partition Diamonds by Powers of 8
论文作者
论文摘要
在2021年,赫希霍恩(Hirschhorn)和卖家(Sellers)在各种普里姆(Primes)的$ k $ eslogation plane分区函数$ d_k(n)$中研究了各种各样的一致性。他们还推测存在一个无限的一致性家族模量,该功能$ d_7(n)$任意高功率为2。我们证明存在这样的一致性家族 - 的确,实际上是8个权力。证明仅利用经典方法,即单个功能中的整数多项式操作,与所有其他已知的无限一致性家庭相比,以$ d_k(n)$ $ d_k(n)$,这需要更多的现代方法才能获得更多的现代方法。
In 2021 da Silva, Hirschhorn, and Sellers studied a wide variety of congruences for the $k$-elongated plane partition function $d_k(n)$ by various primes. They also conjectured the existence of an infinite congruence family modulo arbitrarily high powers of 2 for the function $d_7(n)$. We prove that such a congruence family exists -- indeed, for powers of 8. The proof utilizes only classical methods, i.e., integer polynomial manipulations in a single function, in contrast to all other known infinite congruence families for $d_k(n)$ which require more modern methods to prove.