论文标题
从无穷大的巨大领域斜视
Squinting at massive fields from infinity
论文作者
论文摘要
我们研究了四维平面空间中非驱车量子场理论中大规模标量场的新渐近极限。我们将时空分成一组DS $ _3 $切片,这些切片是空间般的,并且在与任意选择的原点的持续距离下,并研究了在Infinite-Distance限制中获得的边界DS $ _3 $。庞大的散装场在此限制下具有指数级的小尾巴,通过剥离此尾巴,我们获得了与边界ds $ _3 $固有的可观察物。散装中的一个大型场可以分解为无限的DS $ _3 $字段,Minkowski真空对应于这些磁场的欧几里得真空。我们推断大量可观察物的程序在边界相关器中引起了潜在的奇异性,但我们展示了如何通过涂抹边界运营商在自由理论中固化它们。我们表明,通过将边界运营商与合适的涂抹功能整合在一起,可以在自由理论中重建所有本地散装运算符。我们利用扰动理论认为,在存在相互作用的情况下,我们的外推过程仍然得到很好的定义。我们证明了边界涂抹函数的宽度与散装场的定位之间的关系。我们研究边界代数的其他有趣特性,包括全局翻译的作用以及在边界上编码本地体积相互作用的方式。
We study a novel asymptotic limit of massive scalar fields in nongravitational quantum field theories in four-dimensional flat space. We foliate the spacetime into a set of dS$_3$ slices that are spacelike to, and at a constant proper distance from, an arbitrarily chosen origin, and study the boundary dS$_3$ obtained in the infinite-distance limit. Massive bulk fields have an exponentially small tail in this limit, and by stripping off this tail we obtain observables that are intrinsic to the boundary dS$_3$. A single massive field in the bulk can be decomposed into an infinite set of dS$_3$ fields, and the Minkowski vacuum corresponds to the Euclidean vacuum for these fields. Our procedure for extrapolating bulk observables induces potential singularities in boundary correlators but we show how they can be cured in the free theory by smearing the boundary operators. We show that by integrating boundary operators with suitable smearing functions it is possible to reconstruct all local bulk operators in the free theory. We argue, using perturbation theory, that our extrapolation procedure continues to be well defined in the presence of interactions. We demonstrate a relationship between the width of the boundary smearing function and the localization of the bulk field. We study other interesting properties of the boundary algebra including the action of global translations and the manner in which local bulk interactions are encoded on the boundary.