论文标题

关于Bonnesen型定量等值比的最佳集合的注释

A note on existence of an optimal set for a bonnesen type quantitative isoperimetric ratio in the plane

论文作者

Bove, Silvio, Croce, Gisella, Pisante, Giovanni

论文摘要

在本说明中,我们证明存在$ e_0 \ subset \ mathbb {r}^2 $的存在,与一个球不同,它在满足合适的内部锥体条件的凸套中,该凸起的速率\ begin {equination {equina \ frac {d(e)} {λ_\ Mathcal {h}^2(e)},\ end {qore},其中$ d $是等差异和$λ_\ mathcal {h} $脱离了$ e \ subset $ e \ subset \ subset \ mathbb bb bb bb bb的偏差。

In this note we prove the existence of a set $E_0\subset\mathbb{R}^2$, different from a ball, which minimizes, among the convex sets that satisfy a suitable interior cone condition, the ratio \begin{equation} \label{eq:0} \frac{D(E)}{λ_\mathcal{H}^2(E)}, \end{equation} where $D$ is the isoperimetric deficit and $λ_\mathcal{H}$ the deviation from the spherical shape of a set $E\subset \mathbb{R}^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源