论文标题

辫子,链接,辅助主义和正式团体

Braids, links, cobordisms and formal groups

论文作者

Glazunov, Nikolaj

论文摘要

V.V. Sharko在他的论文和书籍中调查了有关流形和辅助主义的功能。辫子与歧管上的功能密切相关。这些连接是通过映射相应圆盘的类组,相应刺穿盘的基本组以及其他一些拓扑或代数结构来表示的。本文介绍了辫子,链接,COBORDISM的选定代数方法和结果与V.V.的研究相关联。鲨鱼。其中包括关于辫子和链接的小组理论结果,无限的辫子群体关系和连接以及在平滑方案上相干滑轮上的连接,这是我们用于构建Lazard的算法的草图,以构建Lazard的一维通用正式组,并选择了对共同构想的正式形式组的应用结果。

V.V. Sharko in his papers and books has investigated functions on manifolds and cobordism. Braids intimately connect with functions on manifolds. These connections are represented by mapping class groups of corresponding discs, by fundamental groups of corresponding punctured discs, and by some other topological or algebraic structures. This paper presents selected algebraic methods and results of braids, links, cobordism connect with investigations by V.V. Sharko. These includes group theoretic results on braids and links, infinitesimal braid group relations and connections as well as connections on coherent sheaves on smooth schemes, a sketch of our algorithm for constructing of Lazard`s one dimensional universal commutative formal group and selected results on applications of commutative formal groups to cobordism theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源