论文标题

消除基于参考的线艺术色彩中的梯度冲突

Eliminating Gradient Conflict in Reference-based Line-Art Colorization

论文作者

Li, Zekun, Geng, Zhengyang, Kang, Zhao, Chen, Wenyu, Yang, Yibo

论文摘要

基于参考的线路上色是计算机视觉中的一项艰巨任务。颜色,纹理和阴影是根据抽象草图渲染的,该草图在很大程度上依赖于草图和参考之间的精确远程依赖模型。桥接跨模式信息并建模远程依赖性的流行技术采用了注意机制。但是,在基于参考的线路颜色化的背景下,几种技术将加剧现有的注意力训练困难,例如,自我监督的培训方案和基于GAN的损失。为了了解训练的不稳定,我们检测到注意力的梯度流并观察到注意力分支之间的梯度冲突。这种现象激发了我们通过在消除冲突阶段的同时保留主要的梯度分支来减轻梯度问题。我们提出了一种使用这种训练策略,定格梯度注意(SGA)的新型注意机制,通过较大的边缘以更好的训练稳定性,优于基线。与最先进的模块相比,我们的ARAR-ART颜色化模块表明,FréchetInception距离(FID,高达27.21%)和结构相似性指数量度(SSIM,高达25.67%)在几个基准上都有显着改善。 SGA代码可从https://github.com/kunkun0w0/sga获得。

Reference-based line-art colorization is a challenging task in computer vision. The color, texture, and shading are rendered based on an abstract sketch, which heavily relies on the precise long-range dependency modeling between the sketch and reference. Popular techniques to bridge the cross-modal information and model the long-range dependency employ the attention mechanism. However, in the context of reference-based line-art colorization, several techniques would intensify the existing training difficulty of attention, for instance, self-supervised training protocol and GAN-based losses. To understand the instability in training, we detect the gradient flow of attention and observe gradient conflict among attention branches. This phenomenon motivates us to alleviate the gradient issue by preserving the dominant gradient branch while removing the conflict ones. We propose a novel attention mechanism using this training strategy, Stop-Gradient Attention (SGA), outperforming the attention baseline by a large margin with better training stability. Compared with state-of-the-art modules in line-art colorization, our approach demonstrates significant improvements in Fréchet Inception Distance (FID, up to 27.21%) and structural similarity index measure (SSIM, up to 25.67%) on several benchmarks. The code of SGA is available at https://github.com/kunkun0w0/SGA .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源