论文标题

对象图像模糊评估的半监督排名

Semi-supervised Ranking for Object Image Blur Assessment

论文作者

Li, Qiang, Yao, Zhaoliang, Wang, Jingjing, Tian, Ye, Yang, Pengju, Xie, Di, Pu, Shiliang

论文摘要

评估对象图像的模糊对于提高对象识别和检索的性能至关重要。主要挑战在于缺乏具有可靠标签和有效学习策略的丰富图像。当前的数据集标记为有限且混乱的质量水平。为了克服这一限制,我们建议将成对图像之间的等级关系标记,而不是它们的质量水平,因为人类更容易标记,并建立具有可靠标签的大规模逼真的面部图像模糊评估数据集。基于此数据集,我们提出了一种仅以成对等级标签作为监督的方法来获得模糊分数。此外,为了进一步提高绩效,我们提出了一种基于四倍体排名一致性的自我监督方法,以更有效地利用未标记的数据。受监督和自我监管的方法构成了最终的半监督学习框架,可以端对端训练。实验结果证明了我们方法的有效性。

Assessing the blurriness of an object image is fundamentally important to improve the performance for object recognition and retrieval. The main challenge lies in the lack of abundant images with reliable labels and effective learning strategies. Current datasets are labeled with limited and confused quality levels. To overcome this limitation, we propose to label the rank relationships between pairwise images rather their quality levels, since it is much easier for humans to label, and establish a large-scale realistic face image blur assessment dataset with reliable labels. Based on this dataset, we propose a method to obtain the blur scores only with the pairwise rank labels as supervision. Moreover, to further improve the performance, we propose a self-supervised method based on quadruplet ranking consistency to leverage the unlabeled data more effectively. The supervised and self-supervised methods constitute a final semi-supervised learning framework, which can be trained end-to-end. Experimental results demonstrate the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源