论文标题

THZ宽带渠道和DOA估计的联合多任务学习

Federated Multi-Task Learning for THz Wideband Channel and DoA Estimation

论文作者

Elbir, Ahmet M., Shi, Wei, Mishra, Kumar Vijay, Chatzinotas, Symeon

论文摘要

本文解决了Terahertz(THZ)通道估计中的两个主要挑战:由于非频率的模拟光束器,横梁分裂现象,即光束未对准,以及计算复杂性,因为超质量的天线数量用于补偿了传播损失。已知数据驱动的技术可以减轻此问题的复杂性,但通常需要将数据集从用户传输到中央服务器,这需要大量的通信开销。在这项工作中,我们引入了联合多任务学习(FMTL),其中用户仅传输模型参数,而不是整个数据集,用于THZ渠道和用户 - 到达方向(DOA)估计以提高通信效率。我们首先提出了一种新型的Beamspace支撑对准技术,用于通过梁切割校正进行通道估计。然后,通道和DOA信息用作训练FMTL模型的标签。通过利用THZ通道的稀疏性,提出的方法的实施方法少于传统技术。与以前的作品相比,我们的FMTL方法提供了更高的通道估计精度,分别提供了大约25(32)倍的模型(通道)训练开销。

This paper addresses two major challenges in terahertz (THz) channel estimation: the beam-split phenomenon, i.e., beam misalignment because of frequency-independent analog beamformers, and computational complexity because of the usage of ultra-massive number of antennas to compensate propagation losses. Data-driven techniques are known to mitigate the complexity of this problem but usually require the transmission of the datasets from the users to a central server entailing huge communication overhead. In this work, we introduce a federated multi-task learning (FMTL), wherein the users transmit only the model parameters instead of the whole dataset, for THz channel and user direction-of-arrival (DoA) estimation to improve the communications-efficiency. We first propose a novel beamspace support alignment technique for channel estimation with beam-split correction. Then, the channel and DoA information are used as labels to train an FMTL model. By exploiting the sparsity of the THz channel, the proposed approach is implemented with fewer pilot signals than the traditional techniques. Compared to the previous works, our FMTL approach provides higher channel estimation accuracy as well as approximately 25 (32) times lower model (channel) training overhead, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源