论文标题
微调分区感知的项目相似性,可高效且可扩展的建议
Fine-tuning Partition-aware Item Similarities for Efficient and Scalable Recommendation
论文作者
论文摘要
通过各种类型的解决方案,可以广泛搜索协作过滤(CF)。 CF中图卷积网络(GCN)的最新成功证明了通过图形建模高阶关系的有效性,而重复的图形卷积和迭代批次优化限制了其效率。相反,项目相似模型试图通过有效的交互编码来构建直接关系。尽管其性能出色,但不断增长的项目数量导致相似性建模过程中的二次增长,从而带来了关键的可伸缩性问题。在本文中,我们研究了最新的GCN模型中采用的图形采样策略,以提高效率,并确定采样图中的潜在项目组结构。基于此,我们提出了一个新的项目相似性模型,该模型引入了图形分区,以限制每个分区中的项目相似性建模。具体来说,我们表明原始图的光谱信息在保存全球级别的信息中很好。然后,将其添加到本地项目的相似性中,并通过新的数据增强策略充当分区意识的先验知识,共同应对通过分区带来的信息损失。在4个数据集上进行的实验表明,所提出的模型优于具有10倍加速的最先进的GCN模型,并具有95 \%参数存储节省的项目相似性模型。
Collaborative filtering (CF) is widely searched in recommendation with various types of solutions. Recent success of Graph Convolution Networks (GCN) in CF demonstrates the effectiveness of modeling high-order relationships through graphs, while repetitive graph convolution and iterative batch optimization limit their efficiency. Instead, item similarity models attempt to construct direct relationships through efficient interaction encoding. Despite their great performance, the growing item numbers result in quadratic growth in similarity modeling process, posing critical scalability problems. In this paper, we investigate the graph sampling strategy adopted in latest GCN model for efficiency improving, and identify the potential item group structure in the sampled graph. Based on this, we propose a novel item similarity model which introduces graph partitioning to restrict the item similarity modeling within each partition. Specifically, we show that the spectral information of the original graph is well in preserving global-level information. Then, it is added to fine-tune local item similarities with a new data augmentation strategy acted as partition-aware prior knowledge, jointly to cope with the information loss brought by partitioning. Experiments carried out on 4 datasets show that the proposed model outperforms state-of-the-art GCN models with 10x speed-up and item similarity models with 95\% parameter storage savings.