论文标题

通过信任驱动的角色适应,安全的人类机器人协作运输

Safe Human-Robot Collaborative Transportation via Trust-Driven Role Adaptation

论文作者

Zheng, Tony, Bujarbaruah, Monimoy, Stürz, Yvonne R., Borrelli, Francesco

论文摘要

我们在存在障碍的情况下研究人类机器人的协作运输任务。每个代理的任务是将僵化的对象携带到共同的目标位置,同时避免障碍并满足其他代理的合规性和驱动约束。人类和机器人不具有对环境的当地观点。当人类政策根据机器人对环境的看法而安全,或者积极领导任务时,可以协助机器人。使用估计的人类输入,机器人通过解决有限的时间最佳控制问题来计划运输对象的轨迹。机器人上的传感器测量人类应用的输入。然后,机器人适当地应用了人类应用的加权组合及其自身计划的投入,其中根据机器人对人类投入的估计来选择权重。这允许在整个任务中对机器人进行动态领导者的角色调整。此外,在信任的低价值下,如果机器人遇到了任何可能未知的障碍,它会触发安全的停止政策,保持系统的安全性并发出信号,并表示人类意图所需的改变。通过实验结果,我们证明了所提出的方法的功效。

We study a human-robot collaborative transportation task in presence of obstacles. The task for each agent is to carry a rigid object to a common target position, while safely avoiding obstacles and satisfying the compliance and actuation constraints of the other agent. Human and robot do not share the local view of the environment. The human policy either assists the robot when they deem the robot actions safe based on their perception of the environment, or actively leads the task. Using estimated human inputs, the robot plans a trajectory for the transported object by solving a constrained finite time optimal control problem. Sensors on the robot measure the inputs applied by the human. The robot then appropriately applies a weighted combination of the human's applied and its own planned inputs, where the weights are chosen based on the robot's trust value on its estimates of the human's inputs. This allows for a dynamic leader-follower role adaptation of the robot throughout the task. Furthermore, under a low value of trust, if the robot approaches any obstacle potentially unknown to the human, it triggers a safe stopping policy, maintaining safety of the system and signaling a required change in the human's intent. With experimental results, we demonstrate the efficacy of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源