论文标题

一种基于Deberta的新型财务问题回答任务的模型

A Novel DeBERTa-based Model for Financial Question Answering Task

论文作者

Wang, Yanbo J., Li, Yuming, Qin, Hui, Guan, Yuhang, Chen, Sheng

论文摘要

作为自然语言处理领域的后起之秀,在各行各业中,问答系统(问答系统)被广泛使用。与其他方案相比,在Q&A系统的可追溯性和解释性方面,财务方案的应用程序有很强的要求。此外,由于对人工智能技术的需求已从最初的计算智能转变为认知智能,因此这项研究主要集中于财务数值推理数据集-Finqa。在共享任务中,目标是根据包含文本和表的给定财务报告生成推理程序和最终答案。我们使用基于Deberta预训练的语言模型的方法,并采用其他优化方法,包括在此基础上进行多模型融合,训练集组合。我们最终获得了68.99的执行精度和64.53的程序精度,在2022 Finqa挑战中排名第4。

As a rising star in the field of natural language processing, question answering systems (Q&A Systems) are widely used in all walks of life. Compared with other scenarios, the applicationin financial scenario has strong requirements in the traceability and interpretability of the Q&A systems. In addition, since the demand for artificial intelligence technology has gradually shifted from the initial computational intelligence to cognitive intelligence, this research mainly focuses on the financial numerical reasoning dataset - FinQA. In the shared task, the objective is to generate the reasoning program and the final answer according to the given financial report containing text and tables. We use the method based on DeBERTa pre-trained language model, with additional optimization methods including multi-model fusion, training set combination on this basis. We finally obtain an execution accuracy of 68.99 and a program accuracy of 64.53, ranking No. 4 in the 2022 FinQA Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源