论文标题
Janus过渡金属二分法双层的互旋
Twistronics of Janus transition metal dichalcogenide bilayers
论文作者
论文摘要
二维(2D)材料的扭曲多层是研究物质的量子阶段,尤其是非常相关的电子的越来越重要的平台。层之间的相对扭曲引入的莫伊尔模式产生了长波长的有效电位,从而导致电子定位。但是,与大量的2D材料相反,到目前为止,很少有人研究过扭曲的异质结构。在这里,我们开发了一种原则连续理论,以研究由扭曲的Janus过渡金属二核苷(TMD)同性恋者和异性双层的摩尔模式引入的电子带。该模型包括晶格松弛,堆叠依赖的有效质量和Rashba自旋轨道耦合。然后,我们对DFT提取的连续模型进行高通量生成和表征,以用于一百多个材料和堆叠组合。我们的模型预测Moiré物理和新兴的对称性取决于化学成分,垂直层方向和扭曲角度,因此迷你搭接波形可以形成三角形,蜂窝和Kagome网络。这些系统特有的Rashba自旋轨道效应可以以小角度占据Moiré带宽。我们的工作使Janus扭曲的异质结构的详细研究允许发现和控制新型电子现象。
Twisted multilayers of two-dimensional (2D) materials are an increasingly important platform for investigating quantum phases of matter, and in particular, strongly correlated electrons. The moiré pattern introduced by the relative twist between layers creates effective potentials of long-wavelength, leading to electron localization. However, in contrast to the abundance of 2D materials, few twisted heterostructures have been studied until now. Here we develop a first-principle continuum theory to study the electronic bands introduced by moire patterns of twisted Janus transition metal dichalcogenides (TMD) homo- and hetero-bilayers. The model includes lattice relaxation, stacking-dependent effective mass, and Rashba spin-orbit coupling. We then perform a high-throughput generation and characterization of DFT-extracted continuum models for more than a hundred possible combinations of materials and stackings. Our model predicts that the moiré physics and emergent symmetries depend on chemical composition, vertical layer orientation, and twist angle, so that the minibands wavefunctions can form triangular, honeycomb, and Kagome networks. Rashba spin-orbit effects, peculiar of these systems, can dominate the moiré bandwidth at small angles. Our work enables the detailed investigation of Janus twisted heterostructures, allowing the discovery and control of novel electronic phenomena.