论文标题
FD-GATDR:使用EHR的联邦 - 分节化学习图表网络,用于医生推荐
FD-GATDR: A Federated-Decentralized-Learning Graph Attention Network for Doctor Recommendation Using EHR
论文作者
论文摘要
在过去的十年中,随着大数据技术的发展,越来越多的患者信息被存储为电子健康记录(EHRS)。利用这些数据,已经提出了各种医生建议系统。通常,此类研究以平坦结构的方式处理EHR数据,每次相遇都被视为一组无序的特征。然而,不得忽略索赔中存储的诸如存储在索赔中的服务顺序的异质结构化信息。本文提出了一个医生推荐系统,并嵌入了时间,以使用异质图注意网络重建患者和医生之间的潜在联系。此外,为了解决患者数据共享交叉医院的隐私问题,还提出了一种基于最小化优化模型的联邦分散学习方法。基于图的推荐系统已在EHR数据集上进行了验证。与基线模型相比,提出的方法将AUC提高了6.2%。我们提出的基于联邦的算法不仅产生了虚拟的融合中心的性能,而且还具有O(1/T)的收敛速度。
In the past decade, with the development of big data technology, an increasing amount of patient information has been stored as electronic health records (EHRs). Leveraging these data, various doctor recommendation systems have been proposed. Typically, such studies process the EHR data in a flat-structured manner, where each encounter was treated as an unordered set of features. Nevertheless, the heterogeneous structured information such as service sequence stored in claims shall not be ignored. This paper presents a doctor recommendation system with time embedding to reconstruct the potential connections between patients and doctors using heterogeneous graph attention network. Besides, to address the privacy issue of patient data sharing crossing hospitals, a federated decentralized learning method based on a minimization optimization model is also proposed. The graph-based recommendation system has been validated on a EHR dataset. Compared to baseline models, the proposed method improves the AUC by up to 6.2%. And our proposed federated-based algorithm not only yields the fictitious fusion center's performance but also enjoys a convergence rate of O(1/T).