论文标题
基于牛顿-CG的屏障方法,用于查找具有复杂性的非凸圆锥优化的二阶固定点
A Newton-CG based barrier method for finding a second-order stationary point of nonconvex conic optimization with complexity guarantees
论文作者
论文摘要
在本文中,我们考虑找到非凸锥优化的近似二阶固定点(SOSP),该点在仿射子空间和凸锥的交点上最小化了两倍的可微分函数。特别是,我们提出了一个基于牛顿 - 偶联的梯度(Newton-CG)的屏障方法,用于查找此问题的$(ε,\sqrtε)$ - SOSP。我们的方法不仅可以实现,而且还达到了$ {\ cal o}(ε^{ - 3/2})$的迭代复杂性,它匹配了找到$(ε,\sqrtε)$的二阶方法的最著名的迭代复杂性 - 未约束的非convex optavex的$ - sosp。操作复杂性,由$ {\ cal o}(ε^{ - 3/2})$ cholesky factorizations和$ \ wideTilde {\ cal o}(\ cal o}(ε^{ - 3/2} \ min \ min \ min \ {
In this paper we consider finding an approximate second-order stationary point (SOSP) of nonconvex conic optimization that minimizes a twice differentiable function over the intersection of an affine subspace and a convex cone. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier method for finding an $(ε,\sqrtε)$-SOSP of this problem. Our method is not only implementable, but also achieves an iteration complexity of ${\cal O}(ε^{-3/2})$, which matches the best known iteration complexity of second-order methods for finding an $(ε,\sqrtε)$-SOSP of unconstrained nonconvex optimization. The operation complexity, consisting of ${\cal O}(ε^{-3/2})$ Cholesky factorizations and $\widetilde{\cal O}(ε^{-3/2}\min\{n,ε^{-1/4}\})$ other fundamental operations, is also established for our method.