论文标题
$ r_2 $ ni $ _2 $的水晶和磁性结构($ r $ = tb和ho)
Crystal and magnetic structures of $R_2$Ni$_2$In compounds ($R$ = Tb and Ho)
论文作者
论文摘要
$ r_2 $ ni $ _2 $ in($ r $ = tb和ho)的晶体和磁性结构已在低温下通过粉末中子衍射研究。该化合物在Mn $ _2 $ alb $ _2 $ -type的原晶晶体结构中结晶。在低温下,磁矩仅位于稀土原子上,形成抗磁性结构。 TB磁矩等于8.65(6)$μ_b$,并且平行于$ c $轴,形成了由传播矢量$ \ boldsymbol {k} = [\ frac {1} {1} {2} {2} {2},\ frac {1} {1} {2} {2} {2} $}的分线磁结构。这种磁性结构稳定至等于40 K的néel温度。在温度范围3.5-8.6 K中,一种不加压的磁性结构,由传播矢量$ \ boldsymbol {k} _1 = [0.76,0,0.52] $观察到,而在温度间隔为2.2-3.1 k中,两个磁性顺序是由两个传播矢量描述的,$ \ baldsymbol \ boldsymbol} = 2 = 2 [\ frac {5} {6},0.16,\ frac {1} {2}] $及其第三谐波$ 3 \ boldsymbol {k} _2 = [\ frac {5} {2} {2} {2},0.48,0.48,\ frac {3} {3} {2} {2} {2} {2} {在2 K以下,观察到在较高温度下检测到的所有磁性结构的共存。对于所有磁性阶段,HO磁矩与$ C $轴平行。低温热容量数据证实了3 K附近的一级过渡。
Crystal and magnetic structures of $R_2$Ni$_2$In ($R$ = Tb and Ho) have been studied by powder neutron diffraction at low temperatures. The compounds crystallize in an orthorhombic crystal structure of the Mn$_2$AlB$_2$-type. At low temperatures, the magnetic moments localized solely on the rare earth atoms form antiferromagnetic structures. The Tb magnetic moments, equal to 8.65(6) $μ_B$ and parallel to the $c$-axis, form a collinear magnetic structure described by the propagation vector $\boldsymbol{k} = [\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]$. This magnetic structure is stable up to the Néel temperature equal to 40 K. For Ho$_2$Ni$_2$In a complex, temperature-dependent magnetic structure is detected. In the temperature range 3.5-8.6 K, an incommensurate magnetic structure, described by the propagation vector $\boldsymbol{k}_1 = [0.76, 0, 0.52]$ is observed, while in the temperature interval 2.2-3.1 K the magnetic order is described by two propagation vectors, namely, $\boldsymbol{k}_2 = [\frac{5}{6}, 0.16, \frac{1}{2}]$ and its third harmonics $3\boldsymbol{k}_2 = [\frac{5}{2}, 0.48, \frac{3}{2}]$. Below 2 K, a coexistence of all magnetic structures detected at higher temperatures is observed. For all magnetic phases, the Ho magnetic moments are parallel to the $c$-axis. The low temperature heat capacity data confirm a first order transition near 3 K.