论文标题

数字转换图像中的平方根压缩和噪声效应

Square Root Compression and Noise Effects in Digitally Transformed Images

论文作者

DeForest, C. E., Lowder, C., Seaton, D. B., West, M. J.

论文摘要

我们报告了噪声和数据表示相互作用以引入系统错误的特定示例。许多仪器收集整数数字化的值和适当的非线性编码,尤其是Square-Root编码,以压缩传输或下行链路的数据;当将它们解码用于分析时,这可能会引入令人惊讶的系统错误。平方根编码和随后的解码通常会引入一个变量,$ \ pm 1 $计数在重建后数据中的数据依赖性系统偏差。当将大量测量(例如,图像像素)平均在一起时,这很重要。使用在存在仪器噪声的情况下特定编码值的概率分布的直接建模,可以应用贝叶斯定理来构建一个解码表,该表将此误差源降低至数字化器步骤的很小一部分;在我们的示例中,从平方根编码中的系统误差从0.23计数RMS降低到0.013 Count RMS。该方法既适用于新实验,例如即将到来的打孔任务,也适用于现有数据集的事实应用 - 即使仪器噪声属性仅是宽松的。此外,该方法不取决于编码公式的细节,并且可以应用于其他形式的非线性编码或数据值表示。

We report on a particular example of noise and data representation interacting to introduce systematic error. Many instruments collect integer digitized values and appy nonlinear coding, in particular square-root coding, to compress the data for transfer or downlink; this can introduce surprising systematic errors when they are decoded for analysis. Square root coding and subsequent decoding typically introduces a variable, $\pm 1$ count value-dependent systematic bias in the data after reconstitution. This is significant when large numbers of measurements (e.g., image pixels) are averaged together. Using direct modeling of the probabiliity distribution of particular coded values in the presence of instrument noise, one may apply Bayes' Theorem to construct a decoding table that reduces this error source to a very small fraction of a digitizer step; in our example, systematic error from square root coding is reduced by a factor of 20 from 0.23 count RMS to 0.013 count RMS. The method is suitable both for new experiments such as the upcoming PUNCH mission, and also for post facto application to existing data sets -- even if the instrument noise properties are only loosely known. Further, the method does not depend on the specifics of the coding formula, and may be applied to other forms of nonlinear coding or representation of data values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源