论文标题
SD-GAN:带有离散属性的面部图像合成的语义分解
SD-GAN: Semantic Decomposition for Face Image Synthesis with Discrete Attribute
论文作者
论文摘要
在生成对抗网络(GAN)中操纵潜在代码的面部图像合成主要集中于连续属性合成(例如,年龄,姿势和情感),而离散属性合成(例如面膜和眼镜)受到较少的注意。直接将现有作品应用于面部离散属性可能会导致结果不正确。在这项工作中,我们提出了一个创新的框架,以通过语义分解(称为SD-GAN)来解决具有挑战性的面部离散属性综合。为了具体,我们将离散属性表示形式明确分解为两个组成部分,即语义提前和抵消潜在表示。语义先验基础显示了在潜在空间中操纵面部表示的初始化方向。提出了通过3D感知语义融合网络获得的偏移潜在呈现,以调整事先的基础。此外,融合网络集成了3D嵌入,以更好地身份保存和离散属性合成。先前基础和抵消潜在表示的组合使我们的方法能够合成具有离散属性的照片真实面部图像。值得注意的是,我们构建了一个大型且有价值的数据集MEGN(从Google和Naver捕获的面膜和眼镜图像),以完成现有数据集中缺乏离散属性。广泛的定性和定量实验证明了我们方法的最新性能。我们的代码可在以下网址提供:https://github.com/montaellis/sd-gan。
Manipulating latent code in generative adversarial networks (GANs) for facial image synthesis mainly focuses on continuous attribute synthesis (e.g., age, pose and emotion), while discrete attribute synthesis (like face mask and eyeglasses) receives less attention. Directly applying existing works to facial discrete attributes may cause inaccurate results. In this work, we propose an innovative framework to tackle challenging facial discrete attribute synthesis via semantic decomposing, dubbed SD-GAN. To be concrete, we explicitly decompose the discrete attribute representation into two components, i.e. the semantic prior basis and offset latent representation. The semantic prior basis shows an initializing direction for manipulating face representation in the latent space. The offset latent presentation obtained by 3D-aware semantic fusion network is proposed to adjust prior basis. In addition, the fusion network integrates 3D embedding for better identity preservation and discrete attribute synthesis. The combination of prior basis and offset latent representation enable our method to synthesize photo-realistic face images with discrete attributes. Notably, we construct a large and valuable dataset MEGN (Face Mask and Eyeglasses images crawled from Google and Naver) for completing the lack of discrete attributes in the existing dataset. Extensive qualitative and quantitative experiments demonstrate the state-of-the-art performance of our method. Our code is available at: https://github.com/MontaEllis/SD-GAN.