论文标题

多任务从增强的辅助数据中学习,以改善语音情绪识别

Multitask Learning from Augmented Auxiliary Data for Improving Speech Emotion Recognition

论文作者

Latif, Siddique, Rana, Rajib, Khalifa, Sara, Jurdak, Raja, Schuller, Björn W.

论文摘要

尽管言语情绪识别(SER)最近取得了进展,但最先进的系统在不同条件下仍缺乏概括。概括不良的关键原因是情绪数据集的稀缺性,这是设计强大的机器学习(ML)模型的重要障碍。 SER的最新作品专注于利用多任务学习(MTL)方法来通过学习共享表示形式来改善概括。但是,这些研究中的大多数都提出了MTL解决方案,要求元标签对辅助任务进行限制的SER系统培训。本文提出了一个MTL框架(MTL-AUG),该框架从增强数据中学习通用表示。我们将增强型分类和无监督的重建用作辅助任务,该任务允许在增强数据上进行培训SER系统,而无需为辅助任务提供任何元标签。 MTL-AUG的半监督性质允许利用丰富的未标记数据,以进一步提高SER的性能。我们在以下设置中全面评估了所提出的框架:(1)在语料库中,(2)跨科语和跨语言,(3)嘈杂的语音,(4)和对抗性攻击。与现有最新方法相比,我们使用广泛使用的IEMOCAP,MSP-IMPROV和EMODB数据集的评估显示出改进的结果。

Despite the recent progress in speech emotion recognition (SER), state-of-the-art systems lack generalisation across different conditions. A key underlying reason for poor generalisation is the scarcity of emotion datasets, which is a significant roadblock to designing robust machine learning (ML) models. Recent works in SER focus on utilising multitask learning (MTL) methods to improve generalisation by learning shared representations. However, most of these studies propose MTL solutions with the requirement of meta labels for auxiliary tasks, which limits the training of SER systems. This paper proposes an MTL framework (MTL-AUG) that learns generalised representations from augmented data. We utilise augmentation-type classification and unsupervised reconstruction as auxiliary tasks, which allow training SER systems on augmented data without requiring any meta labels for auxiliary tasks. The semi-supervised nature of MTL-AUG allows for the exploitation of the abundant unlabelled data to further boost the performance of SER. We comprehensively evaluate the proposed framework in the following settings: (1) within corpus, (2) cross-corpus and cross-language, (3) noisy speech, (4) and adversarial attacks. Our evaluations using the widely used IEMOCAP, MSP-IMPROV, and EMODB datasets show improved results compared to existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源